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Motivation:  Predictive simulations of magnetic confinement fusion and burning plasmas will require 
the quantification of all uncertainties and errors relating to the simulation capabilities.  These include:  
discretization error (temporal and spatial); incomplete convergence error (nonlinear, linear, etc.); 
uncertainties in input data (initial conditions, boundary conditions, coefficients, thermo-physical 
properties, source terms, etc.); and uncertainties in the component models (the specific form and 
parameter values).13  Typically, there is a focus on model parameter uncertainties but uncertainties 
about which model to use and about the bias or discrepancy of a particular model (sometimes called 
model form error) often dominate parameter uncertainty.  This whitepaper addresses the challenges of 
performing uncertainty quantification (UQ) for expensive computational models.  
 
Approach:  Uncertainty can be classified as aleatory uncertainty and epistemic uncertainty.7,14 Aleatory 
uncertainty describes inherent randomness or irreducible variability.  Epistemic uncertainty is used to 
characterize lack of knowledge which could be reduced by additional data.  Aleatory uncertainty is 
commonly estimated and propagated through computational models by probabilistic methods such as 
sampling methods8 (Monte Carlo, quasi-Monte Carlo, Latin Hypercube techniques, etc.) and by direct 
propagation methods (stochastic Galerkin, stochastic collocation, Taylor expansion, etc.).  
 
Sampling methods have general applicability, but can often converge very slowly.  However, recent 
advances focus on ways to preferentially place samples on regions of interest or failure regions, often 
adaptively, to reduce the number of samples.  These methods are designed to handle nonlinear, 
multimodal failure surfaces by creating global approximations (e.g. surrogate models) and adaptively 
refining the approximation in the vicinity of a particular response threshold.  Some examples are the 
Efficient Global Reliability Analysis method (EGRA)2, in which a Gaussian process model is adaptively 
refined to accurately resolve a particular contour of a response function, and GPAIS (Gaussian Process 
Adaptive Importance Sampling)3.  The GPAIS method uses an iterative process to construct a sequence 
of improving component densities which approximate the importance density for importance sampling 
calculations.  Another class of smarter sampling methods is called k-d darts and is based on ideas in 
computational geometry4.  In this approach, samples are no longer “points”:  they may be higher-
dimensional structures such as lines or planes.  Although much progress has been made to with these 
reliability methods and adaptive sampling, there still are many research challenges, the main one being 
how to scale these approaches to higher dimensions. 
 
Direct propagation methods often converge much faster than sampling but are more intrusive.  
However, there are versions of these methods which are non-intrusive.6 For example, polynomial chaos 
expansions (PCE) can be built by evaluating a black-box function at tensor product quadrature points, at 
cubature points, at sparse grid points and using a spectral projection approach to calculate the PCE 
coefficients.1,16  Alternatively, one can use a variety of regression approaches to estimate PCE 
coefficients from a set of Monte Carlo samples, including least-squares, orthogonal matching pursuit, or 
least absolute shrinkage methods.  The latter two methods are examples of compressive sensing 
techniques which are able to identify a reduced basis set from a large number of candidate bases.  This 
is an important feature for non-intrusive stochastic expansion.1  Additionally, there has been significant 
work on methods which further reduce the number of function evaluations required, through adaptive 
sparse grids.  Adaptive schemes have been developed that utilize a variety of metrics to identify 
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important dimensions, such as the Sobol’ sensitivity indices of the PCE11, the spectral coefficient decay 
rates, or generalized sparse grids. Again, a major research challenge is to scale these methods to higher 
dimensions and to identify dominant basis sets from a limited number of simulation runs.  
 
A major focus of the FES program is to understand how repeated disruptive events such as high current 
plasma contacting a tokamak wall will cause failure, and to develop robust designs to better handle such 
disruptive events.  The adaptive sampling and PCE methods outlined above can be used to evaluate 
failure probabilities within an Optimization under Uncertainty (OUU) framework.  The goal might be to 
determine optimal design parameters which maximize an expected output subject to minimizing the 
variance of that output.  Such OUU formulations lead to designs which are more robust than 
deterministic optimization.  Many research challenges remain, including methods to overcome the cost 
of performing a full UQ analysis as each point in design space.  Stochastic expansion methods can be 
more efficient than sampling in OUU, since analytic forms for the statistics and their derivatives are 
available from the expansions, which facilitates gradient-based optimization.5   OUU approaches have 
also been used to address mixed UQ problems which have both epistemic and aleatory uncertainty. 5   
 
A final area of interest is mixed-fidelity UQ.  Often, one would like to use many function evaluations 
from a low-fidelity model and just a few high fidelity model evaluations to make a high-fidelity 
prediction with some level of accuracy.  For example, in plasma physics there is a rich hierarchy of 
models, from relatively cheap magnetohydrodynamics (MHD) models to computationally expensive methods 

like particle-in-cell (PIC) techniques.   One goal might to generate a PIC-scale prediction based on many 
MHD runs and a few PIC runs.  The high-fidelity model is modeled as a sum of the low-fidelity model plus 
a discrepancy term.  Various approaches have been used in multi-fidelity UQ, such as representing both 
the low fidelity model and the discrepancy term with stochastic expansions.1,10  However, much work 
remains to be done.  Another area of interest is relating a simulation model to experimental data.  In 
this case, the model discrepancy is the difference between these terms. It has been modeled using 
Gaussian process models, for example.9  However, recent work proposes an embedded modeling of the 
discrepancy.12  Finally, different model forms for a single model (e.g. material model A, B, or C which are 
“peer models”) are being modeled with categorical variables15 and investigated using optimal model 
selection methods. 

 Research Challenges for UQ methods for fusion energy simulations:  
1. Scaling UQ methods to handle higher input dimensions but minimize the samples required.  

Potential approaches include dimension reduction, compressive sensing, adaptive methods, etc.  
2. Developing OUU formulations that handle the specifics of fusion energy problems such as robust 

design optimization.  For example, one challenge is handling the cumulative effects of disruptive 
events over time, which is not currently treated in single-event failure calculations. 

3. Multi-fidelity UQ approaches:  the analytic form of the discrepancy term, the calculation of 
discrepancy in a non-intrusive vs. embedded manner, the identification of the number of low vs. 
high fidelity runs needed to maintain predictive accuracy, and selection of optimal model 
choices (hierarchical or peer models) are all significant research challenges.    

Impact:  Experimentally validated and integrated predictive capabilities will require validation of 
coupled multi-physics phenomena.  These validation efforts rely on uncertainty characterization at all 
levels.  The UQ methods outlined in this whitepaper are part of a larger effort which will involve 
sensitivity analysis, a posteriori error analysis, model calibration, adjoint-based methods, etc.  The 
overall goal is to create a framework where one can identify and “trade-off” the numerical errors, 
parameter uncertainties, and model discrepancy errors to produce more accurate and efficient large-
scale computational simulations of fusion device physics. 
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